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Abstract-The problem of a rectangular footing or a strip footing resting on a nonhomogeneous
elastic half-space is studied in this paper. The medium is assumed to be isotropic with a shear
modulus linearly increasing with depth G(z) = Go+rnz and a constant Poisson's ratio equal to 1/3.
An important feature of this model is that either the Winkler foundation or the elastic homogeneous
half-space can be made special cases by letting Go or rn equal zero, respectively-some results are
presented for these cases. In order to investigate the necessary conditions for a footing to be
considered rigid, both rigid and flexible footings have been studied. Central concentrated (column)
loading, in addition to the self-weight, is treated-being the most demanding in terms of the zero
uplift requirement (under conditions of symmetry in the loading with respect to the plate geometry,
imposed for reasons of mathematical feasibility). The contact is assumed to be tensionless. There
are three important steps in this formulation. The fundamental solution of the nonhomogeneous
half-space is separated into the fundamental solution of the homogeneous half-space and a function
related to the nonhomogeneity of the half-space. The latter function is approximated by an ana­
lytically tractable expression. The contact region is discretized using an adaptive scheme that
accounts for the possible edge and corner singularities. The latter scheme removes the burden of
most of the numerical integration. A rigid strip footing and a rigid rectangular footing are treated
first to ascertain the convergence of the solution procedure and to provide information requisite for
the flexibility study. The title problem is transformed into the solution of three coupled two­
dimensional singular integral equations. The contact regions are found iteratively since the problem
is nonlinear.

INTRODUCTION

Nonhomogeneous soil subgrades are widely encounted in geotechnical engineering, perhaps
more commonplace than homogeneous soil. Because of the different consolidation histories,
the surface soil tends to have a lower elastic modulus than the deeper soil (Burland et al.,
1973). To model this type of phenomenon, a nonhomogeneous elastic half-space with a
linearly varying shear modulus G(z) = Go+rnz and a constant Poisson's ratio has been
used by many researchers (Gibson, 1974). The model reduces to a homogeneous half-space
when rn = O. On the other hand, the model behaves like a Winkler foundation when Go = 0:
a load at one point has no effect on the surface displacement at another point. Based on
the above model, many loading cases of interest to geotechnical engineering have been
studied, e.g. uniform strip surface load (Gibson, 1969; Gibson et aI., 1971; Brown and
Gibson, 1972), a uniform rectangular surface load (Brown and Gibson, 1973), uniform
circular surface load (Brown, 1969; Gibson et al., 1971), a rigid circular surface footing
(Carrier and Christian, 1973; Brown, 1974), and a flexible circular footing (Boswell and
Scott, 1976). In addition, a nonhomogeneous elastic layer has also been studied (Brown
and Gibson, 1979). The primary information sought is the surface settlement and contact
pressure. The moments and shear forces within the footing can be calculated once the
contact pressure distribution is known.
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Fig. 1. A rectangular footing on a nonhomogeneous elastic half-space.

The principal aim of this paper is to study the cases of rectangular and strip footings
on a nonhomogeneous elastic half-space (Fig. 1). The fundamental solution for the surface
displacement due to a point load can be deduced from Awojobi and Gibson (1973). By
using this solution, the problem of a rigid rectangular footing on a nonhomogeneous elastic
half-space is reduced to the solution of an integral equation with the contact pressure as
the unknown function. Furthermore, by extending the formulation given by Li and
Dempsey (1988), a flexible footing on the foundation is also treated. By studying flexible
footings, it is possible to show the influence of flexibility on the resulting settlement and
contact pressure. In so doing, an indication is provided of the footing rigidity needed for
the rigid-footing assumption to be valid. A special scheme has been used to treat the contact
pressure singularities at the corners and edges.

ANALYTICAL CONSIDERATIONS

The present work applies a similar numerical scheme to that adopted by Dempsey and
Li (1989a,b) to determine contact pressure distributions, deflections and contact regions
for the case of a flexible rectangular footing resting on a nonhomogeneous half space. The
contact is assumed to be smooth and frictionless. The loading is specified to have two axes
of symmetry and to be centrally located on the footing. The contact stresses are constrained
to be either compressive or zero. In other words, uplift or separation of the footing is not
prevented. Significant factors include the ratio of the footing's flexural rigidity to the
compliance of the nonhomogeneous half-space, the proportion of concentrated load to
total load on the footing, and the aspect ratio.

Displacement compatibility between the footing and foundation, as well as the require­
ment that the foundation be tensionless, reduces the unilateral contact problem under
consideration to the solution of three coupled singular integral equations. The displacement
and contact pressure inequalities make the problem nonlinear, and the iterative solution
proceeds by first assuming the whole footing is in contact. The contact behavior expected
in this class of problems was characterized and identified by Dundurs (1975); since the
contact surface associated with the loaded configuration is contained within the initial
contact surface, receding contact is observed. A general feature of smooth receding contact
is for the extent of contact to be independent of the level of loading. Moreover, if uplift is
to occur, the change from initial contact (the flat footing initially has all of its surface in
contact) to the contact region in the loaded configuration takes place discontinuously.

Non-Hertzian or large-area contact problems generally have to be solved by means of
numerical techniques. Hartnett (1980) developed an approach in which the area of contact
is divided into a number of rectangular patches. The pressure in each patch is assumed to
be uniform but unknown. The basic scheme developed by Hartnett has been extended and
applied extensively (Ahmadi et al., 1983). The numerical scheme formulated by Hartnett
(1980) assumed the pressure in each rectangular patch to be constant but unknown.
The advantage of this approach rested with an analytical integration of Boussinesq's
fundamental solution over the patch being available in closed form in the case of a half­
space (Love, 1929). However, in this paper the possible corner and edge singularities need
special consideration. Rather than explicitly include these singularities, which is possible
but computationally and analytically inconvenient, the authors chose to model the expected
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contact pressure singularities using adaptive discretization. The mesh spacing corresponds
to the bi-directional singular behavior in such a way that integration of the contact pressure
over each element gives the same constant if the pressure distribution is
C[(l- (2x/a)2)(I- (2y/b)2] -1/2.

BASIC EQUATIONS

A thin rectangular footing of side lengths a, b in unbonded frictionless contact with a
nonhomogeneous half-space is subjected to a load q (x, y) and an unknown support reaction
p(x,y) (Fig. I). The governing equation for the footing deflection wr(x,y) is given by

DV4Wr(x,y) = q(x,y)-p(x,y), (I)

where the flexural rigidity of the footing, D, equals Erh
3/12(1- vi) ; h is the thickness of the

footing; Er and Vr are the Young's modulus and the Poisson's ratio of the footing, respec­
tively.

The corresponding moments and the vertical forces can be written as

M x = -D (Wr,xx + VrWr,yy),

My = -D(wr,yy +vrwr,xx),

M xy = D(l-vr)wr,xy,

Vx = -D(wr,xx+(2- vr)wr,yyL,

Vy = - D (wr,yy + (2 - vr)wr, xx),yo

(2a)

(2b)

(2c)

(2d)

(2e)

If the footing edges are free and the load is symmetric about both x- and y-axes, the
following boundary conditions have to be satisfied:

M x = Vx = 0, for x = ±a/2, -b/2~y~b/2;

My = Vy = 0, fory = ±b/2, -a/2 ~ x ~ a/2.

Vertical force equilibration also requires that

ffq(x,y) dxdy = ffP (x,y) dxdy.

(3a, b)

(3c, d)

(4)

In general, the boundary condition that the corner forces must equal zero should also be
enforced. However, for the symmetric loading conditions considered here, the corner forces
must either all point upward or all point downward, and thus they must be zero if the
equilibrium condition in eqn (4) and the condition [eqn (3b, d)] of zero edge forces are both
satisfied. Therefore the condition of zero corner forces is not needed.

For a nonhomogeneous elastic half-space with a linearly varying shear modulus
G(z) = Go+rnz and a constant Poisson's ratio Vo= 1/3 (expressions for general values of
Vo could also be determined), the surface displacement due to a uniform normal surface
pressure, q, over a circular area, r ~ b, is given by Awojobi and Gibson (1973) as

(5)

where {J = Go/rn,
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t[Kf(t) - K6(t)] + Ko(t)K) (t)
/(/30 = f(t) = ,

tZ[Kf(t) - K6(t)] +2Kf(t) - tKo(t)K\ (t)
(6)

and Ko, K\ are modified Bessel functions. It can be shown that

f(O) = o. (7)

By using asymptotic expansions of the Bessel functions for large arguments (Abramowitz
and Stegun, 1972), it can also be shown that

4 5 (1)f(t -HfJ) = - - - +0 - .
3 3t tZ

For a point load P at the origin, let b ---+ 0 and qbZ n ---+ P,

P roo
wo(r) = 4nG

o
Jo Jo(r1;,)f(/30 d1;,.

(8)

(9)

This integral diverges at the point r = 0 because of the first two terms in eqn (8), which
means physically that the surface displacement under the concentrated load is infinitely
large. These singularities can be extracted by defining a function

4 51-e- t

get) = f(t)- -+- --.
. 3 3 t

(to)

In eqn (10) get) is a well-behaved function that decays at a rate of t-Z as t approaches
infinity.

Function get) given in eqn (10) can be approximated by a function get) as

M

get) = I am e-myt
,

m=l

(11)

where am and yare unknown constants to be determined by using the least-squares error
criterion such that the error Q is minimized. Exponential decay is used in eqn (11) instead
of algebraic because the resulting integrals can then be performed analytically.

N

Q = I {g(tn)-g(tn)}Z'
n = 1

(12)

Since g(a) decays at the rate of l/tZ
, only a finite region needs to be considered, such that

o= t\ < tz < ... < tn = L. Then,

To determine the coefficients am, use the conditions

8Q
-=0, k= 1,2, ... ,M,
8ak

to give

(13)

(14)
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Fig. 2. Functions related to surface settlement due a point load.

(15)

The above equations are just ordinary linear equations which can be solved by a standard
method once 11 is given. The value of 11 may be searched iteratively as in a one-variable
optimization procedure. The accuracy of the approximation can be checked easily by
comparing g(tn) and g(tn) directly. The accuracy increases as the number of the terms
increases.

For N = 50000, tn = (n-l)/lO and M = 10, the coefficients am (m = 1,2, .. ,10)
obtained are

0.91333, -17.84922, 207.39267, -1290.88357, 4779.55271,

-10978.42693, 15791.11701, -13834.62563, 6748.12628, -1404.98258.

Also 11 = 0.26615, max Ig(tn) -g(tn) I = 0.008, JQ/N = 0.0004.
The integral in eqn (9) can be evaluated analytically after substituting f(t) by the

expressions in eqns (10) and (11) as

(16)

The first term in eqn (16) corresponds to the well known Boussinesq's solution of a point
load on an elastic half-space, while the remaining terms related to 13 can be considered as
correcting terms due to the nonhomogeneity. It can be seen that the correcting terms
become zero for a homogeneous half-space (13 ---> (0). These relations can be clearly seen
from Fig. 2. The differences between the -4/(3r) line and F(r,f3) line is the surface
displacement of a nonhomogeneous half-space under a concentrated load.

The surface displacement of the foundation, Wo (x,y), under a distributed contact
pressure, p (x, y), is now expressed by
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1 fb/2 fal2
Wo(x,y) = 3G p(u,v)g(x,y;u,v)dudv,

o -b/2 -a12
(17a)

in which

1 1
g(x,y;u,v) = + -H(J(X-U)2+(y-V)2,f3), (17b)

nJ(x-u)2+(y-v)2 n

{
5 f3 +J f32 +r2 3 M a }

H(r,f3) = --In +- I m •

4f3 r 4 m =! J(myf3)2+ r2
(17c)

Finally, in addition to the above equations, the compatibility conditions between the footing
and the foundation must also be considered. Since the contact is unilateral, the support
reaction is either compressive or zero. These conditions can be written as, with Q denoting
the contact region,

Wo(x,y) = wr(x,y), p(x,y) > 0, for(x,Y)EQ;

Wo(x,y) > wr(x,y), p(x,y) = 0, for (x,yHQ.

(18a, b)

(18c, d)

RIGID RECTANGULAR FOOTING

For a symmetrically loaded rigid rectangular footing with side lengths of a and b, the
surface displacement J under the footing can be written as

J = fa
l
2 fb

/
2 Wo (J(X-U)2 +(y-V)2)p(U, v) dudv, Ixl ~ a12, Iyl ~ b12, (19)

-a12 -b/2

where p(u, v) is the contact pressure between the footing and the foundation. The title
problem has been transformed into the solution of the integral equation for the unknown
functionp(u, v).

The contact pressure is singular at the edges and corners of a rigid footing; for
frictionless contact conditions, the singularities are asymptotical to p-o.s (Dundurs and
Lee, 1972) and p-O.7304 (Bazant, 1974) for the edges and corners, respectively (p is a local
coordinate). The singularities decrease as f3 becomes smaller, and eventually disappear as
f3 -+°(as for a Winkler foundation).

In order to treat these singularities, the method used in this paper is to discretize the
contact region according to the Gauss-Chebyshev quadrature, which treats inverse-square­
root edge singularities (the most singular case). As shown in Fig. 3, the footing is divided
into N E elements such that, for element},

(20a, b)

where

(2la, b)

The compatibility condition is enforced at the element centers defined as
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Fig. 3. Discretization scheme, N, = 12, Ny = 18, bla = 3/2.

(2lc, d)

Nx, Ny are the numbers of the elements in the x, y directions; and ix, iy, jx, jy are the
sequential numbers in the two directions, respectively. Next, the contact pressure p(x,y) is
assumed constant in each element. In this way, eqn (19) gives rise to the following system
of linear equations:

where

NE

L BijPi = (j, i= 1,2, ... ,NE ,

i= I

(22)

(23)

and Pi is the center pressure in element j. Upon substituting eqn (16) into eqn (23), all
integrals can be evaluated analytically (see Appendix), except the integrals involving
In (fJ +Jpz + r2

), which are evaluated numerically by using Gauss quadrature since the
logarithmic function of r is a regular function for fJ i= O.

From the equilibrium condition,

NE

L AiPi = Po,
i= 1

(24)

where Po is the total load and Ai is the area of element j. Once (j or P is given, the N E +1
unknowns can be solved from eqns (22) and (24).

The above method ofadaptive discretization has the feature that, if the function P (x, y)
is proportional to {[l- (2xja)2][1- (2yjb)2]) -1/2, the integration ofp(x,y) over each element
contributes the same amount. Thus the increasing rate of change of the function near the
edges has been taken into account. The pressure singularities at the corners are over­
estimated, since they are less singular than p -I. The edge singularity is also overestimated
for a foundation with a finite fJ. For full contact, the singular pressure distribution is
approximated here by a piecewise constant function. The piecewise constant pressures tend
to infinity as the edge of the footing is approached; the edge of the associated element tends
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Table 1. Convergence study for a rigid square footing, (bla)(Eolp"l

(Jla = 00 100 10

N x = Ny = 8 0.771328 0.753549 0.673807 0.429644
Nx = Ny = 16 0.771378 0.753603 0.673883 0.429841
Nx = Ny = 32 0.771399 0.753624 0.673907 0.429879

0.1

0.145046
0.145278
0.145340

to zero. The net force and displacements (Table 1) are accurately predicted, while the
contact pressure is truncated right at the edge. Nevertheless, this adaptive discretization
scheme works very well; by this scheme, most of the required integrations are completed
in this paper in closed form. This is very important in a study that necessitates iteration to
find the correct contact area.

RIGID STRIP FOOTING

The problem of a rigid strip footing (bla = (0) can be treated in a similar way as the
rectangular footing. The contact pressure is singular again at the edges. Therefore, by
dividing the footing into a number of elements along the length according to eqns (20),
(2Ia, c), and assuming the contact pressure is constant in each element, equations similar
to eqns (22), (23) and (24) can be derived.

For a nonhomogeneous half-space loaded uniformly along an infinite strip Ixl < b,
the surface displacement can be expressed as (Awojobi and Gibson, 1973)

wo(x) = qG roo sin(b~)cos(xO f(!JOd~.
n 0 Jo ~2

(25)

To obtain the shape of surface settlement, the difference of settlement can be expressed as

- q100 I-cos (xO
wo(x) - wo(O) = ~G sin (bOf(!JO d~

n 0 0 ~2

The different integrals in eqn (26) can all be evaluated analytically (see Appendix).
With eqn (26), the surface settlement at a point due to the uniform load at an element

can be calculated through appropriate coordinate transformations.
Shown in Tables 2 and 3 are the displacement and center contact pressure of a rigid

rectangular footing on a nonhomogeneous elastic half-space, respectively. For !Jla = 00,

the values in the tables are the same as those of the homogeneous half-space (Dempsey and
Li, 1989a). Also, for !Jla = 00 and bla = 00, it can be checked that p(O, O)IPav = 21n
(Sadowsky, 1928). The limiting case of bla = 00 is calculated for a rigid strip footing as
described above. All terms are nondimensional. It is especially interesting to note the term
!Jla: the nonhomogeneity can be scaled with respect to the side length of the footing. This

Table 2. Displacement of a rigid rectangular footing (bla)(EoIPav)

(Jla = 00 100 10 0.1

bla = 1.0 0.7714 0.7536 0.6739 0.4299 0.1453
bla = 1.5 0.9366 0.9111 0.8012 0.4877 0.1556
bla = 2.0 1.0638 1.0311 0.8944 0.5263 0.1617
bla = 3.0 1.2553 1.2091 1.0263 0.5760 0.1686
bla = 5.0 1.5129 1.4427 1.1867 0.6289 0.1749

b ---> 00 when (J = 0 or r = 00 ; Eo = 8Go/3 ; Vo = 1/3.
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Table 3. Center pressure of a rigid rectangular footing p(O, O)IPav

Pia = CfJ 100 10 0.1

bla = 1.0 0.4851 0.4868 0.5006 0.5776 0.7403
bla = 1.5 0.4879 0.4899 0.5061 0.5929 0.7519
bla = 2.0 0.4940 0.4963 0.5140 0.6049 0.7633
bla = 3.0 0.5057 0.5084 0.5281 0.6238 0.7806
bla = 5.0 0.5223 0.5255 0.5484 0.6466 0.8000
bla = CfJ 0.6366 0.6386 0.6540 0.7254 0.8434
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p(O,O)IPav = I when P= 0; Vo = 1/3.
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Fig. 4. Contact pressure of a rigid footing with different Pia values.
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Fig. 5. Contact pressure of a rigid footing with different aspect ratio, bla.

means that, for a given fJ, the foundation appears stiffer as the footing becomes larger.
Theoretically, for fJ -+ 0, the surface displacement becomes infinite and contact pressure
becomes uniform. However, from Table 3 it can be seen that the contact pressure is still far
from that for a Winkler foundation (p (x, y)IPav == 1). Since fJla = 0.1 means that the shear
modulus of the foundation at a depth equal to the side length of the footing is 11 times
greater than at the surface, smaller values of fJla are not likely to be physically meaningful.
As mentioned previously, fJ = 00 corresponds to the case of a homogeneous half-space.

The contact pressure distributions for different aspect ratios and fJla values are shown
in Figs 4 and 5, respectively. The contact pressure tends to be more uniform as fJla decreases.

SAS 32:3/4-G
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It is important to note that the aspect ratio has only a minor influence on the contact
pressure distribution.

FLEXIBLE RECTANGULAR FOOTINGS

A completely rigid footing does not exist in reality, since every footing has a certain
finite flexibility. The question then arises naturally: how rigid must a footing be in order to
be treated as rigid? One possible standard to make such a judgement is to compare the
center pressure and displacement of a flexible footing with those values for a rigid footing.

In the case offinite flexibility, the solution of the footing deflection (Wf) can be expressed
as follows: a particular solution (WI) due to the support reaction p(x,Y), a particular
solution (W2) due to the applied load q(x,Y), a complementary solution (W3) and the corner
deflection (c5). Hence

- a
3

fb/2 f
a
/
2

= bD p(u, v)j(x,Y; u,v)dudv
-b/2 -a/2

a
3

fb/2 f
a
/
2

+ bD q(u,v)j(x,y;u,v)dudv
-b/2 -a/2

00

+ a I {Ai cosh IXiY +BiIXiY sinh IXiY} sech 11i cos IXiX
i~ 1,3,

00

+a I {Cj cosh,Bjx+ Dj,BjX sinh,Bjx} sech ~jCOS ,BjY+c5, (27)
j~ 1,3,

where

j(x . u v) = ~ ~ ~ cos IXmX cos ,BnY cos IXm U cos ,Bnv
,Y, , 4 1... 1... 2 22 '

n m~ 1,3 n= 1,3, (m +(nlr) )
(28)

kn
IXk =-,

a

kn kna knb
,Bk = b' ~k = 2b' 11k = 2a . (29)

The terms sech 11i and sech ~j are added for mathematical convenience; wix, y) can be
calculated for any given load.

The coefficients Ai, Bil Cl' Dj can be determined from the boundary conditions in eqn
(3), The zero moment conditions (3a,c) give Ai and Cj in terms of Bi and Dj, respectively.
The zero vertical force conditions (3b,d) give two more equations to evaluate B i and DJ'
The variables x and Y within these equations can be removed as follows: multiply both
sides of the first equation by (2b21an3 D) cos ,BkY, (k = 1,3, ... ), and integrate from -b12
to bl2 with respect to Y; multiply both sides of the second equation by (2aln3 D) cos lXIX,

(l = 1,3, ... ), and integrate from -a12 to al2 with respect to x. Thus eqns (30) and (31) in
the following are derived. .

Another equation can be derived from the compatibility conditions by substituting
eqns (27) and (5a,e) into eqn (l8a,d) to give eqn (32) in the following. The title contact
problem has thus been reduced to the solution of the following three coupled two-dimen­
sional singular integral equations, in which the remaining unknowns are p(x,y), B i

(i = 1,3, ... ), D j (j = 1,3, ... ) and the extent of contact, Q:
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a
3
Ii 1 Ii p(u,v)dudv

bD
p(u,v)!(x,y;u,v)dudv+3(f J 2 2

Q n 0 Q (X-U) +(Y-V)

00 00

-a L B),;(x,y)-a L D//!ix,y) = wix,y)+c5, x,ydl. (32)
i= 1.3. j~ 1,3,

The constants and functions in eqns (32-34) are defined as follows:

Eki = k 3 i 3 (I- vf)(8/rn) sin Yi sin Yi/W + (k/r) 2)2 ,

Flj = Pi (I- vf)(8r/n) sin YI sin Y)(/ + (lr)2)2,

Gk = k\l-vr)( ~ksech2~k-(p tanh ~k),

HI = P(I- vr)('7lsech2 '71- (p tanh '71),

a3r3 ~ m(m2+ (2 - vf)(k/r)2) sin Ym
h=- L.. bmk ,

n4D m~ 1,3, (m2+ (k/r)2)2

a3r ~ n(n2+(2- vr)(lr)2)sinYn
JI =- 1... bin ,

n4D n= 1,3, (n2+ (lr)2)2

4r3
00 m(m2+(2- vr)(k/r)2) .

cPk(U,V) = - L cos IXmUCOS[3kv smYm,
n4 m= 1,3, (m2+ (k/r)2)2

4r 00 n(n2+(2- vr)(lr)2) .
8t<.u,v) =- L COSIXlucos[3nvsmYm

n4 n~ 1,3, (n2+ (Ir)2)2

,1,lx, y) = {IXiY sinh IXJI- (,up + '7i tanh '7) cosh IXiY} sech '7iCOS lXiX,

t/Jix,y) = {[3jX sinh [3jX-(,up+ ~j tanh 0 cosh[3r} sech ~jCOS [3jY,

4 I
bl2

Ia
l
2bij = ab q(x,y)coslXixcos[3jydxdy,

-b12 -a12

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

(33g)

(33h)

(33i)

(33j)

(33k)

b
r=­ ,

a

kn 3+vr 2
Yk = -2' (p = -1-, ,up = -1- .

-Vr -Vr
(331)

Since the problem is nonlinear, iteration has to be used. The following procedure is used in
this paper:

(1) assume a contact region n;
(2) for the given region solve for Pi= p(Xi> Yi) and c5;
(3) check eqn (I8b) and, if necessary, find a new n which excludes the areas where

the support reaction is in tension;
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Fig. 6. Critical load ratio for uplift to occur (fJ = 00, b = a, Vf= Vo= 1/3).

(4) finally, check eqn (18c) and, if necessary, find a new n which includes the areas
where the footing is in contact with the foundation, i.e. wr(x,Y) ?o wo(x,y).

Because the load and deflection are symmetric, they need to be calculated only over a
quarter of the footing, e.g. over an area of 0 ~ x ~ a/2, 0 ~ Y ~ b/2. The matrices are
rearranged each time to eliminate the extra unknown variables and equations in order to
conform with eqn (18a,d). The matrix elements, however, need to be calculated only once.

A nondimensional stiffness ratio K is introduced as

(34)

where h is thickness of the footing, Ef is the elastic modulus of the footing, and Eo is the
surface elastic modulus of the half-space. For a concrete footing on soil, sand or gravel
with a/h = 5-10, Eo= 10-20 ksi, Ef = 3000-4500 ksi, K = 0.006-0.333 and 10glO K = -2.2
to -0.5. It can be seen that the K-values depend strongly on the thickness to width ratio,
h/a.

The contact behavior ofa flexible footing on an elastic foundation is strongly influenced
by the loading configuration. The particular cases of combined loads of a uniform load
(self-weight) qo and a centrally concentrated load Po are studied in the following; the
proportion of the concentrated load is identified by the load ratio R, where

(35)

The influences of flexibility of the footing K and the load ratio R have been thoroughly
ascertained for rectangular footings on a homogeneous half-space (/3 = 00) or a Winkler
foundation (/3 = 0) (Li and Dempsey, 1988; Dempsey and Li, 1989a,b). The understanding
thereby gained is now briefly summarized. Full contact and the associated linear response
are always maintained until the proportion of the concentrated load is greater than a critical
value Rc (Fig. 6). Reducing the R-value always tends to bring the footing into full contact
with the foundation. However, increasing the stiffness ratio K does not always imply a
more rigid condition. A very stiff-or rigid-footing is obtained if loglo K> -1.5. As the
footing becomes more flexible, with -2.5 < 10glO K < -1.5, the reduction in K does
physically lead to more uplift, as is intuitively expected. The trend reverses, however, if the
footing becomes even more flexible, with 10glO K < - 2.5. This reversal happens because
the self-weight or distributed load exerts an increasingly dominant influence in this case. If
the footing were infinitely flexible, for instance, no uplift would occur at all. The complicated
interaction between K and R is illustrated for the case of a square footing on a homogeneous
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"1.-------1 ./J

Fig. 7. Contact regions for very flexible square footings (* homogeneous half-space, tWinkler
foundation).

half-space and a Winkler foundation in Fig. 7 (the * and t indicate an elastic half-space
and a Winkler foundation, respectively).

For the case ofa square footing resting on a homogeneous half space (Li and Dempsey,
1988) and subjected solely to a concentrated load, the contact regions are circles or parts
of circles if the edges are in contact (Fig. 8). The contact regions for rectangular footings
on an elastic half-space are shown in Fig. 6 ofDempsey and Li (l989b). The contact regions
without any distributed load are elliptical. It is interesting to note that the major axis of
the ellipse is in the short direction of the footing because it is easier to bend about the short
direction. For flexible footings on a homogeneous half-space with distributed loads, the
contact regions are very irregular; the footing can have a central contact region, lose
contact, then regain contact.

Returning to the title problem and the nonhomogeneous half-space, the magnification
of the center pressure and displacement are given in Figs 9 and 10, respectively, for the
cases of a centrally concentrated load only and a uniform load only. As may be expected,
the influence of footing rigidity is small for a uniform load, even for infinitely flexible
footings (see inserted tables). This means that a rather flexible footing can be considered
rigid if subjected to a uniform load only. For a concentrated load, the differences between
the rigid footing solution and the flexible footing solution may be very large, e.g. over 60%

1.4.,.---------------r-----.

a

a[Q]
1.0

0.6

-1.5
0.2~-_:!_:_---±-:'---+-----l----J
- 4.0 - 3.5 - 3.0 - 2.5 - 2.0

loglO K

Fig. 8. Contact radii for a square footing on a homogeneous half-space (R = I, b = a, Vf= 0.3).
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Fig. 9. Magnification of center pressure due to the footing flexibility.
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Fig. 10. Magnification of center displacement due to the footing flexibility.

for K = 0.1. Note that superposition can be used for cases of combined loads. Therefore,
the load type should be taken into account when considering the rigidity of a footing. As a
general rule, from the viewpoint of center displacement and center contact pressure, a
footing may considered rigid if K > 1.

Another way to consider a footing as rigid is to check if uplift occurs or is impending.
However, from previous results (Li and Dempsey, 1988), it can be found that uplift occurs
only if the footing is very flexible. For instance, for a square footing on a homogeneous
elastic half-space, uplift occurs if K ~ O.oI. For K = 0.01, the center settlement of the
flexible footing is twice that of a rigid footing and the center contact pressure is five times
greater.

The changes in contact pressure distributions are shown in Fig. 11. Clearly, a smaller
Pia ratio has about the same effect as a smaller K value, viz., a faster increase in the elastic
modulus makes the footing relatively more flexible.

APPROXIMATE CONTACT PRESSURE DISTRIBUTIONS

It can be seen from the figures that the contact pressure distributions are all similar.
Therefore, an approximate expression may be suggested for practical uses. For example,
for a rectangular footing
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Fig. 11. Contact pressure of a flexible square footing with different Pia and K values.

p(x,y) A +B[(2x/a)2 +(2y/b)2]

Pav jl-(2x/a)2 Jl-(2y/b)2'
(36)

the constants A and B can be determined by requiring that the approximate expression has
the same resultant force and the center value as the exact solution. Thus

4
B=~-P

2 c'
Te

(37)

Then, by finding or interpolating the Pc values from Table 2, and modifying them using
Fig. 10, if the footing is flexible, an approximate pressure distribution can be obtained.

For a strip footing, the following expression can be used

p(x)

Pay

A +B(2x/a)2

jl-(2x/a)2,

4
A = Pc, B = - - 2A.

Te
(38)

These expressions can be used to estimate the bending moments and shear forces.

CONCLUSIONS

The problem of a rigid rectangular footing on a nonhomogeneous foundation can be
formulated into an integral equation and solved numerically.

The following conclusions can be drawn from the numerical results:

(1) Increasing the value of m in G(z) = Go+mz reduces the foundation settlement
considerably and makes the contact pressure more uniform.

(2) A parameter, p/a = Go/(am), can be introduced to indicate the degree of non­
homogeneity. It is important to notice that increasing the side length a has a similar effect
as increasing the nonhomogeneity parameter m. In other words, the nonhomogeneity
considered is more important for larger footings.

(3) Theoretically, a Winkler foundation is the limiting case for the nonhomogeneous
foundation with an infinite m/Govalue. However, it has been found that the two foundations
behave quite differently for any practical m/Govalues.

(4) Since the contact pressure is theoretically singular at the edges, the traditional
assumption of uniform pressure distribution may significantly underestimate the central
bending moment.
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(5) If the proportion of the centrally concentrated load to the total load is large, the
flexibility of the footing should be considered even for a concrete footing on soil. The
stiffness ratio K is a key indicator, in which the ratio h/a is an important number.
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APPENDIX: ANALYTACAL INTEGRATIONS

I', (', In J(X-U)2+(y-V)Z dudv = Ils i -x, S2 -x, t l - y, t2-y),
S1 Jt 1

f,(rx,f3) = rx In (J rx2 + f32+ f3)+ f3 In (Jrx2+ f32 +rx),

(AI)

(A2)

(A3)

(M)

(A5)

(A6)
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(A7)

(A8)

+ 2e arctan [(b+a)/e] + 2e arctan [(b-a)/e]- 2b log (b' + e2)-4e arctan (ble), (A9)

roo l-cos(aO l-e-P'
4 Jo ~2 -~-sin(b~)d~ = p(b+a) log[(b+a)z+pZ]+p(b-a) log[(b-a)2+pZ

]

+(b+a)2 arctan [PI(b+a)]+(b-a)Z arctan [PI(b-a)]

+ pzarctan [(b+a)/P]+ p2arctan [(b-a)/P]

-2b2arctan (Pjb)_2pzarctan (b/f3)-2bPlogW+ 13 2). (AIO)

Equation (A7) has been derived from Lur'e (1964).


